求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

「希尔珀特」修訂間的差異檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
行 1: 行 1:
 
+
{{Infobox person
 +
| 姓名    = 希尔珀特
 +
|圖片 = [[File:希尔伯特1.jpg|缩略图 |居中|250px|[https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1560947362954&di=780edb0cf8a320bd34fb0713b038ea89&imgtype=0&src=http%3A%2F%2Fimg.lssdjt.com%2F201001%2F20%2FBC22479672.jpg  原图链接[http://baa.bitauto.com/sx/thread-6652111.html#76024117  图片来源于易车网]]] 
 +
| 出生日期 =1862年
 +
| 國籍    = 德国
 +
| 别名    =David Hilbert 
 +
| 職業    = 数学家
 +
| 知名原因 =著名数学家 
 +
| 知名作品 = </br> </br> </br> </br> 
 +
}}
 
'''戴维·希尔伯特''',又译大卫·希尔伯特,D.(David Hilbert,1862~1943),德国著名数学家。
 
'''戴维·希尔伯特''',又译大卫·希尔伯特,D.(David Hilbert,1862~1943),德国著名数学家。
 
 他于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的至高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”,他是天才中的天才。
 
 他于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的至高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”,他是天才中的天才。
 
 中文名 戴维·希尔伯特 外文名 David Hilbert 国    籍 德国 出    生 1862年 去    世 1943 成    就 数学家
 
 中文名 戴维·希尔伯特 外文名 David Hilbert 国    籍 德国 出    生 1862年 去    世 1943 成    就 数学家
 
+
人物生平编辑
 +
 +
[[File:希尔伯特1.jpg|缩略图]]
 +
希尔伯特出生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳,中学时代他就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至能应用老师讲课的内容。他与17岁便拿下数学大奖的著名数学家闵可夫斯基(爱因斯坦的老师)结为好友,同进于哥尼斯堡大学,最终超越了他。
 +
1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学,并于1884年获得博士学位,后留校取得讲师资格和升任副教授。
 +
1892年结婚。1893年他被任命为正教授。
 +
1895年转入哥廷根大学任教授,此后一直在数学之乡哥廷根生活和工作。
 +
1886年的希尔伯特
 +
1886年的希尔伯特
 +
他于1930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴契夫斯基奖和波约伊奖。
 +
1943年希尔伯特在孤独中逝世。但由于大量数学家的到来,美国成为了当时的世界数学中心。
 +
主要成就编辑
 +
科学研究
 +
希尔伯特照片
 +
希尔伯特照片(6张)
 +
希尔伯特是对二十世纪数学有深刻影响的数学家之一,他领导了著名的哥廷根学派,使哥廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。
 +
希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题。按时间顺序,他的主要研究内容有:不变量理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、“希尔伯特空间”等。
 +
在这些领域中,他都做出了重大的或开创性的贡献。希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:“只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。”
 +
1912年的希尔伯特
 +
1912年的希尔伯特
 +
在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题统称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未得到解决。他在讲演中所阐发的相信每个数学问题都可以得到解决的信念,对数学工作者是一种巨大的鼓舞。他说:“在我们中间,常常听到这样的呼声:这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有不可知。”三十年后,1930年,在接受哥尼斯堡荣誉市民称号的讲演中,针对一些人信奉的不可知论观点,他再次满怀信心地宣称:“我们必须知道,我们必将知道。”希尔伯特去世后,这句话就刻在了他的墓碑上。
 +
希尔伯特之墓。
 +
希尔伯特之墓。 [1]
 +
希尔伯特的《几何基础》(1899)是公理化思想的代表作,书中把欧几里得几何学加以整理,成为建立在一组简单公理基础上的纯粹演绎系统,并开始探讨公理之间的相互关系与研究整个演绎系统的逻辑结构。
 +
1904年,又着手研究数学基础问题,经过多年酝酿,于二十年代初,提出了如何论证数论、集合论或数学分析一致性的方案。他建议从若干形式公理出发将数学形式化为符号语言系统,并从不假定实无穷的有穷观点出发,建立相应的逻辑系统。然后再研究这个形式语言系统的逻辑性质,从而创立了元数学和证明论。希尔伯特的目的是试图对某一形式语言系统的无矛盾性给出绝对的证明,以便克服悖论引起的危机,一劳永逸地消除对数学基础以及数学推理方法可靠性的怀疑。
 +
1930年,年轻的奥地利数理逻辑学家哥德尔(K.G?del,1906~1978)获得了否定的结果,证明了希尔伯特方案是不可能实现的。但正如哥德尔所说,希尔伯特有关数学基础的方案“仍不失其重要性,并继续引起人们的高度兴趣。”
 +
学术论著
 +
《希尔伯特全集》(三卷,其中包括他的著名的《数论报告》)、《几何基础》、《线性积分方程一般理论基础》等,与其他人合著的有《数学物理方法》、《理论逻辑基础》、《直观几何学》、《数学基础》。
 +
希尔伯特问题
 +
在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的相信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。
 +
希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。
 +
(1)康托的连续统基数问题。
 +
1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。1963年,美国数学家科思(P.Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。
 +
(2)算术公理系统的无矛盾性。
 +
欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。
 +
(3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。
 +
问题的意思是:存在两个等高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等。德思(M.Dehn)在1900年已解决。
 +
(4)两点间以直线为距离最短线问题。
 +
此问题提的一般。满足此性质的几何很多,因而需要加以某些限制条件。1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。
 +
(5)拓扑学成为李群的条件(拓扑群)。
 +
这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐平(Zippin)共同解决 [2]  。1953年,日本的山迈英彦已得到完全肯定的结果。
 +
(6)对数学起重要作用的物理学的公理化。
 +
1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。后来,在量子力学、量子场论方面取得成功。但对物理学各个分支能否全盘公理化,很多人有怀疑。
 +
(7)某些数的超越性的证明。
 +
需证:如果α是代数数,β是无理数的代数数,那么α^β一定是超越数或至少是无理数(例如,2^√2和exp(π))。苏联的盖尔封特(Gelfond)1929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。但超越数理论还远未完成。目前,确定所给的数是否超越数,尚无统一的方法。
 +
(8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素数问题。
 +
素数是一个很古老的研究领域。希尔伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孪生素数问题。黎曼猜想至今未解决。哥德巴赫猜想和孪生素数问题目前也未获最终解决,其最佳结果分别属于中国数学家陈景润和张益唐。
 +
(9)一般互反律在任意数域中的证明。
 +
1921年由日本的高木贞治,1927年由德国的阿廷(E.Artin)各自给以基本解决。而类域理论至今还在发展之中。
 +
(10)能否通过有限步骤来判定不定方程是否存在有理整数解?
 +
求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解。1950年前后,美国数学家戴维斯(Davis)、普特南(Putnan)、罗宾逊(Robinson)等取得关键性突破。1970年,巴克尔(Baker)、费罗斯(Philos)对含两个未知数的方程取得肯定结论。1970年。苏联数学家马蒂塞维奇最终证明:在一般情况下,答案是否定的。虽然得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系。
 +
(11)一般代数数域内的二次型论。
 +
德国数学家哈塞(Hasse)和西格尔(Siegel)在20年代获重要结果。60年代,法国数学家魏依(A.Weil)取得了新进展。
 +
(12)类域的构成问题。
 +
即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。此问题仅有一些零星结果,离彻底解决还很远。
 +
(13)一般七次代数方程以二变量连续函数之组合求解的不可能性。
 +
(14)建立代数几何学的基础。
 +
荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。
 +
注一舒伯特(Schubert)计数演算的严格基础。
 +
一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学有密切的关系。但严格的基础至今仍未建立。
 +
(15)代数曲线和曲面的拓扑研究。
 +
此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。后半部要求讨论备dx/dy=Y/X的极限环的最多个数N(n)和相对位置,其中X、Y是x、y的n次多项式。对n=2(即二次系统)的情况,1934年福罗献尔得到N(2)≥1;1952年鲍廷得到N(2)≥3;1955年苏联的波德洛夫斯基宣布N(2)≤3,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。关于相对位置,中国数学家董金柱、叶彦谦1957年证明了(E2)不超过两串。1957年,中国数学家秦元勋和蒲富金具体给出了n=2的方程具有至少3个成串极限环的实例。1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是(1,3)结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第(16)问题提供了新的途径。
 +
(16)用全等多面体构造空间。
 +
德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决。
 +
(17)正则变分问题的解是否总是解析函数?
 +
德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决。
 +
(18)研究一般边值问题。
 +
此问题进展迅速,已成为一个很大的数学分支,目前还在继读发展。
 +
(19)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。
 +
此问题属线性常微分方程的大范围理论。希尔伯特本人于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果。1970年法国数学家德利涅(Deligne)作出了出色贡献。
 +
(20)用自守函数将解析函数单值化。
 +
此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。
 +
(21)发展变分学方法的研究。
 +
这不是一个明确的数学问题。20世纪变分法有了很大发展。
 +
(22)用自守函数将解析函数单值化。
 +
此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。
 +
(23)发展变分学方法的研究。
 +
这不是一个明确的数学问题。20世纪变分法有了很大发展。
 +
人物轶事编辑
 +
1932年,希尔伯特在讲课
 +
1932年,希尔伯特在讲课
 +
1. 以希尔伯特命名的数学名词多如牛毛,有些连希尔伯特本人都不知道。比如有一次,希尔伯特问系里的同事“请问什么叫做希尔伯特空间?”
 +
2.1916年,埃米·诺特这位卓有才华的青年妇女来到哥廷根大学。希尔伯特对她的学识倍加欣赏,立即决定让她留下来当讲师,辅助相对论的研究工作。但当时歧视妇女的现象相当严重,希尔伯特的建议遭到语言学、历史学等教授们的强烈反对。希尔伯特拍案而起,大声疾呼:“先生们,这里是学校,不是澡堂!” 于是因此激怒了他的对手,希尔伯特对此不为所动,毅然决定让诺特以自己的名义代课。
 +
3.他的一位学生买了一辆车,后来不幸死于一场车祸。在葬礼上,死者家属请希尔伯特老师说几句话,于是他说:“小克劳斯是我的学生当中最优秀的,他生前在数学方面,具有非凡的天分。他对数学问题的涉及非常广泛,诸如……” 他暂停了一会儿,然后说:“考虑单位区间上一组可微函数,然后取它们的闭包……”
 +
获奖记录编辑
 +
1930年获得瑞典科学院的米塔格 - 莱福勒奖,
 +
1942年成为柏林科学院荣誉院士。
  
 
[[Category:科學技術醫學人物]]
 
[[Category:科學技術醫學人物]]

於 2019年6月19日 (三) 17:44 的修訂

希爾珀特
出生 1862年
國籍 德國
別名 David Hilbert
職業 數學家
知名於 著名數學家
知名作品



戴維·希爾伯特,又譯大衛·希爾伯特,D.(David Hilbert,1862~1943),德國著名數學家。 他於1900年8月8日在巴黎第二屆國際數學家大會上,提出了新世紀數學家應當努力解決的23個數學問題,被認為是20世紀數學的至高點,對這些問題的研究有力推動了20世紀數學的發展,在世界上產生了深遠的影響。希爾伯特領導的數學學派是19世紀末20世紀初數學界的一面旗幟,希爾伯特被稱為「數學界的無冕之王」,他是天才中的天才。 中文名 戴維·希爾伯特 外文名 David Hilbert 國 籍 德國 出 生 1862年 去 世 1943 成 就 數學家 人物生平編輯

希爾伯特1.jpg

希爾伯特出生於東普魯士哥尼斯堡(前蘇聯加里寧格勒)附近的韋勞,中學時代他就是一名勤奮好學的學生,對於科學特別是數學表現出濃厚的興趣,善於靈活和深刻地掌握以至能應用老師講課的內容。他與17歲便拿下數學大獎的著名數學家閔可夫斯基(愛因斯坦的老師)結為好友,同進於哥尼斯堡大學,最終超越了他。 1880年,他不顧父親讓他學法律的意願,進入哥尼斯堡大學攻讀數學,並於1884年獲得博士學位,後留校取得講師資格和升任副教授。 1892年結婚。1893年他被任命為正教授。 1895年轉入哥廷根大學任教授,此後一直在數學之鄉哥廷根生活和工作。 1886年的希爾伯特 1886年的希爾伯特 他於1930年退休。在此期間,他成為柏林科學院通訊院士,並曾獲得施泰訥獎、羅巴契夫斯基獎和波約伊獎。 1943年希爾伯特在孤獨中逝世。但由於大量數學家的到來,美國成為了當時的世界數學中心。 主要成就編輯 科學研究 希爾伯特照片 希爾伯特照片(6張) 希爾伯特是對二十世紀數學有深刻影響的數學家之一,他領導了著名的哥廷根學派,使哥廷根大學成為當時世界數學研究的重要中心,並培養了一批對現代數學發展做出重大貢獻的傑出數學家。 希爾伯特的數學工作可以劃分為幾個不同的時期,每個時期他幾乎都集中精力研究一類問題。按時間順序,他的主要研究內容有:不變量理論、代數數域理論、幾何基礎、積分方程、物理學、一般數學基礎,其間穿插的研究課題有:狄利克雷原理和變分法、華林問題、特徵值問題、「希爾伯特空間」等。 在這些領域中,他都做出了重大的或開創性的貢獻。希爾伯特認為,科學在每個時代都有它自己的問題,而這些問題的解決對於科學發展具有深遠意義。他指出:「只要一門科學分支能提出大量的問題,它就充滿着生命力,而問題缺乏則預示着獨立發展的衰亡和終止。」 1912年的希爾伯特 1912年的希爾伯特 在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題統稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未得到解決。他在講演中所闡發的相信每個數學問題都可以得到解決的信念,對數學工作者是一種巨大的鼓舞。他說:「在我們中間,常常聽到這樣的呼聲:這裡有一個數學問題,去找出它的答案!你能通過純思維找到它,因為在數學中沒有不可知。」三十年後,1930年,在接受哥尼斯堡榮譽市民稱號的講演中,針對一些人信奉的不可知論觀點,他再次滿懷信心地宣稱:「我們必須知道,我們必將知道。」希爾伯特去世後,這句話就刻在了他的墓碑上。 希爾伯特之墓。 希爾伯特之墓。 [1] 希爾伯特的《幾何基礎》(1899)是公理化思想的代表作,書中把歐幾里得幾何學加以整理,成為建立在一組簡單公理基礎上的純粹演繹系統,並開始探討公理之間的相互關係與研究整個演繹系統的邏輯結構。 1904年,又着手研究數學基礎問題,經過多年醞釀,於二十年代初,提出了如何論證數論、集合論或數學分析一致性的方案。他建議從若干形式公理出發將數學形式化為符號語言系統,並從不假定實無窮的有窮觀點出發,建立相應的邏輯系統。然後再研究這個形式語言系統的邏輯性質,從而創立了元數學和證明論。希爾伯特的目的是試圖對某一形式語言系統的無矛盾性給出絕對的證明,以便克服悖論引起的危機,一勞永逸地消除對數學基礎以及數學推理方法可靠性的懷疑。 1930年,年輕的奧地利數理邏輯學家哥德爾(K.G?del,1906~1978)獲得了否定的結果,證明了希爾伯特方案是不可能實現的。但正如哥德爾所說,希爾伯特有關數學基礎的方案「仍不失其重要性,並繼續引起人們的高度興趣。」 學術論著 《希爾伯特全集》(三卷,其中包括他的著名的《數論報告》)、《幾何基礎》、《線性積分方程一般理論基礎》等,與其他人合著的有《數學物理方法》、《理論邏輯基礎》、《直觀幾何學》、《數學基礎》。 希爾伯特問題 在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的相信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。 希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。 (1)康托的連續統基數問題。 1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科思(P.Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。 (2)算術公理系統的無矛盾性。 歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。 (3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。 問題的意思是:存在兩個等高等底的四面體,它們不可能分解為有限個小四面體,使這兩組四面體彼此全等。德思(M.Dehn)在1900年已解決。 (4)兩點間以直線為距離最短線問題。 此問題提的一般。滿足此性質的幾何很多,因而需要加以某些限制條件。1973年,蘇聯數學家波格列洛夫(Pogleov)宣布,在對稱距離情況下,問題獲解決。 (5)拓撲學成為李群的條件(拓撲群)。 這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊平(Zippin)共同解決 [2] 。1953年,日本的山邁英彥已得到完全肯定的結果。 (6)對數學起重要作用的物理學的公理化。 1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。 (7)某些數的超越性的證明。 需證:如果α是代數數,β是無理數的代數數,那麼α^β一定是超越數或至少是無理數(例如,2^√2和exp(π))。蘇聯的蓋爾封特(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。 (8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素數問題。 素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未獲最終解決,其最佳結果分別屬於中國數學家陳景潤和張益唐。 (9)一般互反律在任意數域中的證明。 1921年由日本的高木貞治,1927年由德國的阿廷(E.Artin)各自給以基本解決。而類域理論至今還在發展之中。 (10)能否通過有限步驟來判定不定方程是否存在有理整數解? 求出一個整數係數方程的整數根,稱為丟番圖(約210-290,古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況下,答案是否定的。雖然得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯繫。 (11)一般代數數域內的二次型論。 德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A.Weil)取得了新進展。 (12)類域的構成問題。 即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。 (13)一般七次代數方程以二變量連續函數之組合求解的不可能性。 (14)建立代數幾何學的基礎。 荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。 注一舒伯特(Schubert)計數演算的嚴格基礎。 一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關係。但嚴格的基礎至今仍未建立。 (15)代數曲線和曲面的拓撲研究。 此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備dx/dy=Y/X的極限環的最多個數N(n)和相對位置,其中X、Y是x、y的n次多項式。對n=2(即二次系統)的情況,1934年福羅獻爾得到N(2)≥1;1952年鮑廷得到N(2)≥3;1955年蘇聯的波德洛夫斯基宣布N(2)≤3,這個曾震動一時的結果,由於其中的若干引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了(E2)不超過兩串。1957年,中國數學家秦元勛和蒲富金具體給出了n=2的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勛、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勛進一步證明了二次系統最多有4個極限環,並且是(1,3)結構,從而最終地解決了二次微分方程的解的結構問題,並為研究希爾伯特第(16)問題提供了新的途徑。 (16)用全等多面體構造空間。 德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。 (17)正則變分問題的解是否總是解析函數? 德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。 (18)研究一般邊值問題。 此問題進展迅速,已成為一個很大的數學分支,目前還在繼讀發展。 (19)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。 此問題屬線性常微分方程的大範圍理論。希爾伯特本人於1905年、勒爾(H.Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。 (20)用自守函數將解析函數單值化。 此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變量情形已解決而使問題的研究獲重要突破。其它方面尚未解決。 (21)發展變分學方法的研究。 這不是一個明確的數學問題。20世紀變分法有了很大發展。 (22)用自守函數將解析函數單值化。 此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變量情形已解決而使問題的研究獲重要突破。其它方面尚未解決。 (23)發展變分學方法的研究。 這不是一個明確的數學問題。20世紀變分法有了很大發展。 人物軼事編輯 1932年,希爾伯特在講課 1932年,希爾伯特在講課 1. 以希爾伯特命名的數學名詞多如牛毛,有些連希爾伯特本人都不知道。比如有一次,希爾伯特問系裡的同事「請問什麼叫做希爾伯特空間?」 2.1916年,埃米·諾特這位卓有才華的青年婦女來到哥廷根大學。希爾伯特對她的學識倍加欣賞,立即決定讓她留下來當講師,輔助相對論的研究工作。但當時歧視婦女的現象相當嚴重,希爾伯特的建議遭到語言學、歷史學等教授們的強烈反對。希爾伯特拍案而起,大聲疾呼:「先生們,這裡是學校,不是澡堂!」 於是因此激怒了他的對手,希爾伯特對此不為所動,毅然決定讓諾特以自己的名義代課。 3.他的一位學生買了一輛車,後來不幸死於一場車禍。在葬禮上,死者家屬請希爾伯特老師說幾句話,於是他說:「小克勞斯是我的學生當中最優秀的,他生前在數學方面,具有非凡的天分。他對數學問題的涉及非常廣泛,諸如……」 他暫停了一會兒,然後說:「考慮單位區間上一組可微函數,然後取它們的閉包……」 獲獎記錄編輯 1930年獲得瑞典科學院的米塔格 - 萊福勒獎, 1942年成為柏林科學院榮譽院士。