求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

耗散结构查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

耗散结构 (dissipative structure) 关于“耗散结构”的理论是物理学中非平衡统计的一 个重要新分支,是由比利时科学家伊里亚·普里戈津(I.Prigogine)于20世纪70年代提出的,由 于这一成就,普里戈津获1977年诺贝尔化学奖。差不多是同一时间,西德物理学家赫尔曼·哈肯 (H.Haken)提出了从说明研究对象到方法都与耗散结构相似的“协同学”(Syneraetics),哈肯于 1981年获美国富兰克林研究院迈克尔逊奖。现在耗散结构理论和协同学通常被并称为自组织 理论。

简介

当系统处于远离热力学平衡的状态时,在一定外界条件下,由于系统内部非线性相互作用,可以经过突变而形成新的有序结构——耗散结构。这里的耗散指的是系统维持这种新型结构需要从外界输入能量或物质。 耗散结构理论是比利时科学家普里高津在研究非平衡热力学过程中提出的。因此,他获得了1977年的诺贝尔化学奖。 20世纪40年代发展起来的不可逆过程热力学,研究的主要是靠近平衡态的问题。按照热力学第二定律,自然界的过程都是向着熵增加的方向进行的,即从有序到无序。而生物进化过程中,有些生命现象正好与此相反,是向熵减少的方向进行。如单细胞到多细胞,是从无序到有序以致高度有序的。再如,西瓜生长时,土地干得很,水不仅不会从西瓜里渗到泥土里去,反而会从泥土里聚集到西瓜里去; 又如海带和紫菜能把海水里的碘集中起来,这种现象称为富聚现象。它是直接与平衡态的热力学和统计物理学的规律相反。正是这种现象,促进了非平衡态热力学的发展,而耗散结构的理论也正是在研究非平衡热力学过程中提出的理论,从而解决了上述问题。 耗散结构的出现是系统远离平衡的一种非线性效应,因为在离平衡态不远的非平衡线性区域里,不可能发生突变,使系统过渡到新的稳定态而形成耗散结构。生命物质从生物大分子、细胞、组织、器官、个体种群以致整个生物界,都是远离平衡态的耗散结构,都是非孤立的,非平衡的,非线性系统,通过与周围环境交换物质、能量和熵来维持和发展有序结构,即维持生活和生长,并导致进化。 耗散结构的理论目前基本上还处于客观描述阶段,但也取得了一定程度的进展。耗散结构的理论可用于流体、激光等系统,还可用于化学反应中的有序结构,生物进化,核反应过程,生态系统中的人口分布,环境保护乃至交通运输,城市发展等问题的研究。比如,城市就是一个耗散结构。它不断靠外界供给材料 (各种消费资料和建筑材料),并不断把废品排出到外界去,也就是通过与外界的物资交流,从外界取得能量和负熵 (把熵给予外界),才得以维持和发展,一旦与外界的交流断绝了,便趋于停滞和死亡,最后变为无序的废墟。 [1]

发展历程

耗散结构 (dissipative structure) 关于“耗散结构”的理论是物理学中非平衡统计的一个重要新分支,是由比利时科学家伊里亚·普里戈津(I.Prigogine)于20世纪70年代提出的,由于这一成就,普里戈津获1977年诺贝尔化学奖。差不多是同一时间,西德物理学家赫尔曼·哈肯(H.Haken)提出了从 研究对象到方法都与耗散结构相似的“协同学”(Syneraetics),哈肯于1981年获美国富兰克林研究院迈克尔逊奖。现在耗散结构理论和协同学通常被并称为自组织 理论。我们首先从几个例子看一下究竟什么是耗散结构。天空中的云通常是不规则分布的,但有 时蓝天和白云会形成蓝白相间的条纹,叫做天街,这是一种云的空间结构。容器装有液体,上下底分别同不同温度的热源接触,下底温度较上底高,当两板间温差超过一定阈值时,液体内部就 会形成因对流而产生的六角形花纹,这就是著名的贝纳德效应,它是流体的一种空间结构。在贝洛索夫—一萨波金斯基反应中,当用适当的催化剂和指示剂作丙二酸的溴酸氧化反应时,反应介质的颜色会在红色和蓝色之间作周期性变换,这类现象一般称为化学振荡或化学钟,是一种时间 结构。在某些条件下这类反应的反应介质还可以出现许多漂亮的花纹·,此即萨波金斯基花纹,它展示的是一种空间结构。在另外一些条件下,萨波金斯基花纹会成同心圆或螺旋状向外扩散,象波一样在介质中传播,这就是所谓化学波,这是一种时间一一空间结构。诸如此类的例子很多, 它们都属于耗散结构的范畴。为了从各不相同的耗散结构实例中找出其本质的特征和规律,普里戈津学派研究了非平衡热力学,继承和发展了前人关于物理学中相变的理论,运用了当代非线性微分方程以及随机过程的数学知识,揭示出耗散结构有如下几方面的基本特点。 [2]

特征及应用

远离平衡态的开放系统,通过与外界交换物质和能量,可能在一定的条件下形成一种新的稳定的有序结构。 典型的例子是贝纳特流。在一扁平容器内充有一薄层液体,液层的宽度远大于其厚度,从液层底部均匀加热,液层顶部温度亦均匀,底部与顶部存在温度差。当温度差较小时,热量以传导方式通过液层,液层中不会产生任何结构。但当温度差达到某一特定值时,液层中自动出现许多六角形小格子,液体从每个格子的中心涌起、从边缘下沉,形成规则的对流。从上往下可以看到贝纳特流形成的蜂窝状贝纳特花纹图案。这种稳定的有序结构称为耗散结构。类似的有序结构还出现在流体力学、化学反应以及激光等非线性现象中。 耗散结构的特征是:①存在于开放系统中,靠与外界的能量和物质交换产生负熵流,使系统熵减少形成有序结构。耗散即强调这种交换。对于孤立系统,由热力学第二定律可知,其熵不减少,不可能从无序产生有序结构。②保持远离平衡态。贝纳特流中液层上下达到一定温度差的条件就是确保远离平衡态。③系统内部存在着非线性相互作用。在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大,达到有序。 比利时的普里高津、德国的哈肯、日本的久保-铃木等学派对远离平衡态的耗散结构理论的建立与发展作出重要贡献。但理论尚属初级阶段,有待于发掘新的概念、规律和数学工具。耗散结构理论已用于研究流体、激光等系统、核反应过程,生态系统中的人口分布,环境保护问题,乃至交通运输、城市发展等课题。

参考来源