開啟主選單

求真百科

  固態相變

研究各種固體組織結構的形成及其穩定性的一門學科。當一組原子或分子的集聚體具有均一的原子或電子組態時,這一集聚體稱為相(phase);它具有一系列熱力學性質特徵,如體積、壓力、溫度及能量。兩相之間具有明顯的界限、相界兩側的微觀結構、成分(或兩者兼而有之)發生不連續變化。

目錄

簡介

當一種固相由於熱力學條件(如溫度、壓力、作用於該固體的電場、磁場等)變化成為不穩定的時候,如果沒有對相變的障礙,將會通過相結構(原子或電子組態)的變化,轉變成更為穩定或平衡的狀態,此即發生「固態相變」。在金屬學中,相變常指一種組織在溫度或壓力變化時,轉變為另一種或多種組織的過程,如多晶型轉變、珠光體相變等。人類對材料的使用決定於能夠得到和利用某些特定結構的微觀組織和分布,藉以獲得在使用條件下(如應力分布、磁場等)所需要的此種材料的加工或使用性能。這種組織結構包括電子組態、原子鍵合性質、原子或分子組態、構成的晶體結構及其中的晶體缺陷、晶體的形狀和分布(晶粒和金相組織),也包括它們當中的組織缺陷。因此研究固態相變對控制金屬、合金以及某些非金屬材料性能有極為重要的理論和實踐意義。相變晶體學──相結構及結構關係 相變晶體學研究相變前後相的結構,這些結構的相互關係,相界面兩側晶體原子排列的匹配的程度,生成相在原來的母相中析出的晶體平面(即慣析面habit plane),以及母相與新相之間的晶體學取向關係(orientation relationship)。如果相變時具有熱效應,吸熱相將具有較高的內能,鍵合有所減弱,從而影響一個原子的最近鄰和次近鄰原子的組態。伯格(M。 J。Buerger)根據結構變化涉及的是最近鄰、次近鄰或更遠的原子,以及重組時是否需要原子重新組合,將相變進行分類,並指出需要原子位置的重組和鍵的破壞的相變,如低碳鋼從奧氏體中形成鐵素體,將需要較高的激活能,相變的速度較小;而當相變時只發生相對位移、轉動或鍵的畸變時,如奧氏體淬火時轉變為馬氏體,相變將具有較高速度。

評價

相變的金相學 宏觀材料相變產物的性質,特別是對組織敏感的性質如強度、斷裂韌度、延性、超塑性等,除了決定於晶體本身結構及所包含的晶體缺陷(繼承母相的或相變時產生的)以及它們所具有的性質外,還決定於相變後組成相的晶粒之間的相互關係,它們的形狀大小及其在母相中的分布等因素,如鋼中珠光體的粗細(即珠光體中滲碳體和鐵素體的厚度)將影響鋼的性能。相變的這個研究領域,稱為相變的金相學。相變後產物的金相組織,即新相的分布與母相的殘留量及分布,由母相及新相的晶體結構,相變的動力學(特別是相變的溫度、新相形成的速度),以及合金的成分等因素所控制。研究相變的這些方面及其相互關係是控制合金材料組織和性質的重要手段。金相組織及其性質還受母相的成分不均勻性,溶解或偏聚的雜質,析出的夾雜物及其分布,存在的晶體缺陷(如晶粒間界、位錯、層錯)以及加熱、冷卻和形變產生的缺陷等的影響相變熱力學 相變的發生是由於某一個固相在給定的熱力學條件下成為不穩定的物系,該固相就會具有通過結構或成分的變化使物系的自由能下降的趨勢。從原子或分子的組態變化來考慮,相變可以有三個基本方式:①結構變化,如熔化、凝固、多晶型轉變、馬氏體相變、塊型轉變(massive transformation);②成分的變化,如具有溶解度間隔(solubility gap)的物系中一個相分為兩種與原來結構相同而成分不同的相;③有序程度的變化,如黃銅的有序化。大多數轉變則兼具兩種或三種過程。這些變化都伴有相應的自由能變化(見合金熱力學)。[1]

參考文獻