求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

納米材料檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
納米材料

本書是編者在多年講授「納米材料」研究生課程的基礎上,結合國內外公開發表的文獻編寫而成。全書共九章,介紹了有關納米材料的基本知識,結合一些具體材料介紹了納米材料的力學、電、磁、光、熱等基本性能,以及納米材料的墓本合成與製備方法。 本書是高等工科院校的材料、機械、動力等專業研究生學習納米材料的入門教材,部分章節也可作為高年級本科生學習納米材料的選修課教材,亦可供從事納米材料科研及工程技術人員參考。

簡介

納米結構是以納米尺度的物質單元為基礎按一定規律構築或營造的一種新體系。它包括納米陣列體系、介孔組裝體系、薄膜嵌鑲體系。對納米陣列體系的研究集中在由金屬納米微粒或半導體納米微粒在一個絕緣的襯底上整齊排列所形成的二位體系上。而納米微粒與介孔固體組裝體系由於微粒本身的特性,以及與界面的基體耦合所產生的一些新的效應,也使其成為了研究熱點,按照其中支撐體的種類可將它劃分為無機介孔複合體和高分子介孔複合體兩大類,按支撐體的狀態又可將它劃分為有序介孔複合體和無序介孔複合體。在薄膜嵌鑲體系中,對納米顆粒膜的主要研究是基於體系的電學特性和磁學特性而展開的。美國科學家利用自組裝技術將幾百隻單壁納米碳管組成晶體索「Ropes」,這種索具有金屬特性,室溫下電阻率小於0.0001Ω/m;將納米三碘化鉛組裝到尼龍-11上,在X射線照射下具有光電導性能, 利用這種性能為發展數字射線照相奠定了基礎。

評價

在實際中應用的納米材料大多數都是人工製造的。納米磁性材料具有十分特別的磁學性質,納米粒子尺寸小,具有單磁疇結構和矯頑力很高的特性,用它製成的磁記錄材料不僅音質、圖像和信噪比好,而且記錄密度比γ-Fe2O3高几十倍。超順磁的強磁性納米顆粒還可製成磁性液體,用於電聲器件、阻尼器件、旋轉密封及潤滑和選礦等領域。傳統的陶瓷材料中晶粒不易滑動,材料質脆,燒結溫度高。納米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上運動,因此,納米陶瓷材料具有極高的強度和高韌性以及良好的延展性,這些特性使納米陶瓷材料可在常溫或次高溫下進行冷加工。如果在次高溫下將納米陶瓷顆粒加工成形,然後做表面退火處理,就可以使納米材料成為一種表面保持常規陶瓷材料的硬度和化學穩定性,而內部仍具有納米材料的延展性的高性能陶瓷。在航天用的氫氧發動機中,燃燒室的內表面需要耐高溫,其外表面要與冷卻劑接觸。因此,內表面要用陶瓷製作,外表面則要用導熱性良好的金屬製作。但塊狀陶瓷和金屬很難結合在一起。如果製作時在金屬和陶瓷之間使其成分逐漸地連續變化,讓金屬和陶瓷「你中有我、我中有你」,最終便能結合在一起形成傾斜功能材料,它的意思是其中的成分變化像一個傾斜的梯子。當用金屬和陶瓷納米顆粒按其含量逐漸變化的要求混合後燒結成形時,就能達到燃燒室內側耐高溫、外側有良好導熱性的要求。 [1]

參考文獻