求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

「半导体」修訂間的差異檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
 
(未顯示由 2 位使用者於中間所作的 9 次修訂)
行 1: 行 1:
'''半导体'''
+
{{Infobox person
 +
| 姓名    = 半导体
 +
|圖片 = [[File:T016e0a8f3b653e5075.jpg|缩略图|居中|250px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=dcf179a52a5caa6113503b96980c76c2&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=b79f5852e4b7c74d528a3ea017f47c98&currsn=0&ps=97&pc=97 原图链接][http://www.zonglanxinwen.com/img/fc1c4c2b5ecccb5bbe0b.html 图片来源于纵览新闻网]]]
 +
|圖片尺寸 =
 +
| 圖像說明 = 
 +
| 发现日期 = 1833年
 +
| 性质 =  物理材料
 +
| 别名 = 
 +
| 导电性 = 导体与绝缘体之间
 +
| 知名原因 =  集成电路的主要材料
 +
| 代表材料 =   硅、锗、砷化镓
 +
}}
 +
'''半导体''' ( semiconductor),指常温下[[导电]]性能介于[[导体]](conductor)与[[绝缘体]](insulator)之间的材料。
  
 导体(conductor) 是指电阻率 很小且易 导电 的物质。导体 存在 大量 可自由 移动 子称为 。在外电场 作用 下, 流子作 定向运动 明显 的电
+
  半导体在[[收音机]]、[[电视机]]以及测温上有着广泛的应用。如[[二极管]]就是采用半导体制作的器件。半 导体是指 一种[[导电]]性可受控制,范围可从[[绝缘体]]至[[导体]]之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如[[计算机]]、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有[[硅]]、[[锗]]、[[砷化镓]]等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。<ref>[http://tags.eeworld.com.cn/tags/%E5%8D%8A%E5%AF%BC%E4%BD%93 半导体],电子工程世界网</ref>
 +
=='''基本信息'''==
 +
{| class="wikitable"
 +
|-
 +
|中文名称 ||   半导体  ||  物质形式||  气体、等离子体等
 +
|-
 +
|外文名称||  semiconductor ||   应用 ||  集成电路
 +
|-
 +
|导电性能  ||  导体与绝缘体之间||发现时间 || 1833年
 +
|-
 +
|代表材料 || 硅、锗、砷化镓|| 电阻率 ||10-3~10-9 W•cm
 +
|}
 +
=='''半导体的概念'''==
 +
[[File:Ef550a74a66f42e0960b7a3085985c21 th.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=ff6fec07e39ef92fc7f5eb96be0cac87&prevsn=110&currsn=170&ps=216&pc=60 原图链接][http://www.sohu.com/a/124346281_465246 图片来源 搜狐网]]]
 +
 
 +
所谓半导体,顾名思义,就是它的 导电 能力介乎[[导体]]和[[绝缘体]]之间,半导体 [[电阻率]]为10-3~10-9 W•cm。
 +
 
 +
[[ 物质]]存在的形式多种多样,[[固体]]、[[液体]]、[[气体]]、等[[离子]]体等 通常把 电性差的材料,如煤、人工晶体、[[琥珀]]、[[陶瓷]]等称为[[绝缘 ]]。而把导电性比较好的[[金属]]如金、银、铜、铁、锡、铝等称为[[导体]]。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的 存在 才真正被学术界认 。半导体材料最外层[[电子]]既不像导体那样极易摆脱原子核的束缚, 成为[[ 自由 电子]], 也不像绝缘体那样被原子核束缚得那么紧, 因此, 半导体的导电特性介于二者之间。
 +
 
 +
=='''半导体材料'''==
 +
 
 +
半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的[[电子]]材料,其[[电阻率]]在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的[[电导率]]。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。 半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。 <ref>[http://download.eeworld.com.cn/detail/nonogugu66/197396 半导体材料相关知识介绍],电子工程世界网,2013-09-22</ref>
 +
 
 +
常见的半导体材料有[[硅]]、[[锗]]、[[砷化镓]]等。用得最多的半导体是锗(zhě)和硅(guī),都是四价[[元素]]。 一种银白色的硬而脆的金属元素,呈二价及四价,用作半导体(如在[[晶体管]]中) [germanium]――元素符号Ge 锗 zhě金属[[化学]][[元素]]。符号Ge。灰白色结晶,有光泽。它是一种重要 半导体材料。主要用于制[[晶体管]]、[[整流器]]等。<ref>[http://tags.eeworld.com.cn/tags/%E5%8D%8A%E5%AF%BC%E4%BD%93 半导体], 电子 工程世界网</ref>
 +
=='''半导体的类型'''==
 +
[[File:D80e06717e4f5c714ce4a95169967427.png|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=def5b4b9e33a99df9b4ae5b5df50fc9d&currsn=0&ps=97&pc=97 原图链接][http://dy.163.com/v2/article/detail/CRV79ENH0519C3OK.html 图片来源于网易网]]]
 +
 
 +
本征半导体:不含杂质且无晶格缺陷的半导体 称为[[本征半导体]]。
 +
 
 +
参杂半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质[[元素]],可得到杂质半导体。
 +
 
 +
=='''发展历史'''==
 +
 
 +
1833年,[[英国]][[巴拉迪]]最先发现[[硫化银]]的电阻随着[[温度]]的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现[[硫化银]]材料的[[电阻]]是随着温度的上升而降低。这是半导体现象的首次发现。
 +
 
 +
1839年[[法国]]的[[贝克莱尔]]发现半导体和[[电解质]]接触形成的结,在光照下会产生一个[[电压]],这就是后来人们熟知的光生[[伏特]]效应,这是被发现的半导体的第二个特征。
 +
 
 +
1873年,[[英国]]的[[史密斯]]发现[[硒]][[晶体]]材料在光照下电导增加的[[光电导效应]],这是半导体又一个特有的性质。半导体的这四个效应,(jianxia[[霍尔效应]]的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被[[考尼白格]]和[[维斯]]首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
 +
 
 +
1874年,[[德国]]的[[布劳恩]]观察到某些[[硫化物]]的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向[[电压]],它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的[[整 ]]效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了[[铜]]与[[氧化铜]]的[[整流]]效应
 +
 
 +
2015年中国 公布的“中国制造2025”战略中提出培育半导体产业。为此,中国地方政府竞相利用优惠政策吸引国内 的半导体相关企业。
 +
 
 +
2018年4月11日,[[复旦大学]]微 子学院教授张卫、周鹏团队成员刘春森在实验室内对硅片进行切割。张卫、周鹏团队实现了具有颠覆性的[[二维半导体]]准非易失存储原型器件,开创了第三类存储技术。中国大型半导体企业紫光集团旗下的长江存储科技在[[湖北省]][[武汉市]]推进的[[三维NAND]]的量产项目,爱德万测试的销售负责人称“估计将在2018年底到2019年迅速实现量产”。
 +
 
 +
2018年4月24日,《日本经济新闻》预计最早在2018年底开始向市 供应尖端产品[[三维NAND]]型闪存芯片。曾在[[液晶]]面板等众多产业出现的产品供给过剩也可能在半导体领域引发价格 跌。
 +
 
 +
=='''主要特点'''==
 +
[[File:14-23-51-34-508485.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=4347ea18b5e9bad008465b6e90548dce&currsn=0&ps=97&pc=97 原图链接][https://www.rongbiz.com/info/show-htm-itemid-369315.html 图片来源于工业互联网]]]
 +
 +
半导体五大特性∶掺杂性,热敏性 光敏性,负[[电阻率]][[温度]]特性,[[整 ]]特性。
 +
 
 +
在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热[[辐射]]条件下,其导电性有明显的变化。
 +
 
 +
=='''半导体的应用'''==
 +
[[File:201901301413251022.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=8b49e49bb57fde577947b9f17f0aff8b&currsn=0&ps=97&pc=97 原图链接][http://www.xincailiao.com/news/news_detail.aspx?id=413747 图片来源于新材料网]]]
 +
[[硅]]在当前的应用相当广泛,他不仅是半导体[[集成电路]],半导体器件和硅[[太阳能]]电池的基础材料,而且用半导体制作的电 器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上与案件都离不开[[硅]]材料。[[锗]]是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中与制作各种[[二极管]],[[三极管]]等。而以锗制 的其他钱江如探测器,也具有着许多的优点,广泛的应用于多个领域。
 +
 
 +
有机半导体材料具有热激活[[电导率]],如[[萘蒽]],[[聚丙烯]]和[[聚二乙烯苯]]以及[[碱金属]]和[[蒽]]的[[络合物]],有机半导体材料可分为[[有机物]],[[聚合物]]和给体受体[[络合物]]三类。有机半导体芯片等产品的生产能力差,但是拥有加工处理方便,结实耐用 ,成 本低廉,耐磨耐用等特性。
 +
 
 +
非晶半导体按键合力的性质分为[[共价键]]非晶半导体和[[离子键]]非晶半导体两类,可用液相快冷方法和真空蒸汽或溅射 方法制备。在工业上,非晶半导体材料主要用于制备像[[传感器]],[[太阳能]][[锂 池]]薄膜[[晶体管]]等非晶体半导体器件。
 +
 
 +
[[化合物]]半导体材料种类繁多,按[[元素]]在[[周期表]]族来分类,分为三五族,二六族,四四族等。如今化合物半导体材料已经在太阳能电池,光电器件,超高速器件,微波等领域占据重要位置,且不同种类具有不同的应用。总之,半导体材料的发展迅速,应用广泛,随着时间的推移和技术的发展,半导体材料的应用将更加重要和关键,半导体技术和半导体材料的发展也将走向更高端的市场。
 +
 
 +
当前化合物半导体产业发展主要体现在以下五个方面
 +
[[File:20160427125915748.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=a2b3cb7ef1645e9142e3b5697825cfec&currsn=0&ps=97&pc=97 原图链接][http://ic.big-bit.com/news/224674.html 图片来源于半导体器件应用网]]]
  
金属是最常见的一 导体 金属原子最外层的价 电子 很容易挣脱原子核 束缚 而成为自由电子,留下的正离子(原子实)形成规则的点阵 金属中自由 浓度很大 所以金属导体 电导率通常比其他 导体 材料 的大 。金属导体 电阻率一般随温度降低而减小。在极低温度下,某些金属与合金的电阻率将消失而转化为"超导体"
+
1.消费 光电子 光存贮、数字电视与全球家用 电子 产品装备无线控制和数据连接 比例越来越高 音视频装置日益无线化 再加上笔记本 普及 这类产品 市场为化合物半 导体 产品 应用带来了庞 大的 新市场
  
 
+
2.汽车光电子市场。目前汽车防撞[[雷达]]已在很多高档车上得到了实用,将来肯定会越来越普及。汽车防撞雷达一般工作在毫米波段,所以肯定离不开砷化镓甚至磷化铟,它的中频部分才会用到锗硅。由于全球汽车工业十分庞大,因此这是一个必定会并发的巨大市场。
==''' 基本 信息'''==
+
 
 +
3.半导体照明技术的迅猛发展。基于半导体发光二极管(LED)的半导体光源具有体积小、发热量低、耗电量小、寿命长、反应速度快、环保、耐冲击不易破、废弃物可回收,没有污染,可平面封装、易开发成轻薄短小产品等优点,具有重大的经济技术价值和市场前景。
 +
 
 +
特别是 于[[LED]]的半导体照明产品具有高效节能、绿色环保优点 ,目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、[[台灯]]、[[笔记 电脑]]背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。
  
文名称  导体
+
4.新一代[[光纤通信]]技术。新一代的40Gbps光通信设备不久将会推向市场,代替25Gbps设备投入大量使用。而这些设备 将大量使用[[磷化铟]]、[[砷化镓]]、[[锗]][[硅]]等[[化合物]]半 导体 集成电路。
  
文名称 conductor
+
5.移动通信技术正在不断朝着有利于化合物半导体产品的方向发展。目前二代半(2.5G)技术成为移动通信技术的主流,同时正在逐渐向第三代(3G)过渡。二代半技术对功放的效率和散热有更高的要求,这对[[砷化镓]]器件有利。3G技术要求更高的工作频率,更宽的带宽和高线性,这也是对砷化镓和锗硅技术有利的。目前第四代(4G)的概念已明确提出来了。[[4G技术]]对手机有更高的要求。它要求手机在楼内可接入无线局域网(WLAN),即可工作到2.4GHz和5.8GHz,在室 可在二代、二代半、三代等任意制式下工作。
  
 +
因此这是一种多功能、多频段、多模式的移动终端。从系统小巧来说,当然会希望实现单芯片集成(SOC),但单一的硅技术无法在那么多功能和模式上都达到性能最优。要把各种优化性能的功能集成在一起,只能用系统级封装(SIP),即在同一封装中用[[硅]]、锗硅、砷化镓等不同工艺来优化实现不同功能,这就为[[砷化镓]]带来了新的发展前景。<ref>[http://www.elecfans.com/baike/bandaoti/20180308644581.html 半导体材料应用有哪些_半导体材料应用领域介绍],电子发烧友网,2018年03月08日</ref>
 +
=='''半导体材料的发展'''==
 +
[[File:O4YBAFsFNfuAcvNcAACi-nMs13E065.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=db61e1f6b07dcf0bc001d8fbc61f9b44&currsn=0&ps=97&pc=97 原图链接][http://www.elecfans.com/bandaoti/gongyi/20180523682433.html 图片来源于电子发烧友网]]]
 
   
 
   
适用学科范围电磁学,科学,电学
+
===第一代半导体材料===
  
  特点  阻率很小且易于传 电流
+
  主要以[[硅]](Si)、[[锗]](Ge)为主,20世纪50年代,Ge在半导体中占主导地位,主要应用于低压、低频、中功率[[晶体管]]以及光 探测器中,但是Ge半 体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被Si器件取代。
  
 +
用Si材料制造的半导体器件,耐高温和抗辐射性能较好。Si储量极其丰富,提纯与结晶方便,二氧化硅(SiO2)薄膜的纯度很高,绝缘性能很好,这使器件的稳定性与可靠性大为提高,因此Si已经成为应用最广的一种半导体材料。
  
=='''金属 导体'''==
+
目前95%以上的半 导体 器件和99%以上的集成电路都是由Si材料制作。在21世纪,它的主导和核心地位仍不会动摇。但是Si材料的物理性质限制了其在光电子和高频高功率器件上的应用。
  
金属是最常见的一类 导体 。金属中的原子核和内层电子构成原子实,规则地排列成点阵,而外层的价电子容易挣脱原子核的束缚而成为自由电子,它们构成导电的载流子。
+
===第二代半 导体 材料===
  
金属中自由 电子 的浓度很大 每立方厘 约10个,因此金属导体 电阻率很小 率很大 金属的电阻率为10-10欧·米 一般随温度降低而减小。金属导电过程中不引起化学反应 也没 显著的 物质 转移 称为 一类 导体。
+
20世纪90年代以来,随着移动通信的飞速发展、以[[光纤通信]]为基础的信息高速公路和[[互联网]]的兴起,以[[砷化镓]](GaAs)、[[磷化铟]](InP)为代表的第二代半导体材料开始崭露头脚。GaAs、InP等材料适用于制作高速、高频、大[[功率]]以及发光 电子 器件 是制作高性能微波、毫 波器件及发光器件 优良材料 广泛应用于卫星通讯、移动通讯、光通信、[[GPS 航]]等领域 但是GaAs、InP材料资源稀缺 价格昂贵 并且还 毒性,能污染环境,InP甚至被认为是可疑致癌 物质, 这些缺点使得 二代半 导体 材料的应用具有很大的局限性
  
=='''液体 导体'''==
+
===第三代半 导体 材料===
  
 电 解质的溶液或 称为 电解液的熔融电解质也是 导体 ,其载流子是正负离子 实验发现,大部分纯液 虽然也能离解 但离解程度很小,因而不是 导体 。如纯水的电阻 率高 达10欧·米,比金属的 大10-10倍。但如果在纯水中加入一 电解质 离子浓度大为增加,使电阻率大为降低,成为导体。电解液的 阻率比金属的大得多,这是因为电解液中的载流 浓度比金属小得多,而且离子与周围介质的作用力较大,使它在外电场中的迁移 也要小得多。电解液在通电过程中伴随有化学变化,且有物质的转移,称为第二类导体。它常应用于电化学工业,如电解提纯 电镀 。而把导电过程中不引起化学变化,也没有显著物质转移 导体,如金属,称为"第一类导体"
+
  主要包括[[SiC]]、[[GaN]]、[[金刚石]]等,因其禁带宽度(Eg)大于或等于2.3[[ 子]][[伏特]](eV),又被 称为 宽禁带半 导体 材料 和第一代、第二代半导 材料相比 第三代半 导体 材料具有高热导 击穿场强、高饱和 子漂移速 和高键合能等优 点, 可以满足现代 电子 技术对高温、高功 率、 高压、高频以及抗辐射 恶劣条件 新要求
  
=='''气 体导体'''==
+
是半导体材料领域最有前景的材料,在[[国防]]、[[航空]]、[[航天]]、[[石油]]勘探、光存储等领域有着重要应用前景,在宽带通讯、[[太阳能]]、汽车制造、半导体照明、智能电网等众多战略行业可以降低50%以上的能量损失,最高可以使装备 积减小75%以上,对人类科技的发展具有里程碑的意义。<ref>[http://dy.163.com/v2/article/detail/CRV79ENH0519C3OK.html 中科风控:第三代半 导体 材料——碳化硅(SiC)],网易网,2017-08-16</ref>
  
电离的气体也能 电(气 导电),其中的载流子 是电子和正负离子。通常情形下,气体是良好的绝缘体。如果借助 外界原因,如加热或用X射线 γ射线或紫外线照射,可使气体分 离解,因而电离的气体便 为导体。电离气体的导电性与外加电压有很大关系,且常伴有发声、发光等物理过程。电离气体常应用于电 造工业。气体由于外界电离剂作用下的导电称为气体的非自持放电。随着外加电压增大,电流亦增大,电压增大到一定值时非自持放电达到饱和,继续再增加电压到某一定值后电流突然急剧增加,这时即使撤去电离剂,仍能维持导电,气体就由非自持放电过渡到自持放电。气体自持放电的特性取决于气体的种类、压强、电极材料、电极形状、电极温度、两极间距离等多种因素。条件不同,自持放电采取不同的形式,有辉光放电、弧光放电和电晕放电等。气体的非自持放电和自持放电有许多实际应用。
+
=='''半 导体 领域十大突破'''==
 +
[[File:635870922356392440842.jpg|缩略图|350px|[https://image.so.com/view?q=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&src=srp&correct=%E5%8D%8A%E5%AF%BC%E4%BD%93%E6%9D%90%E6%96%99&ancestor=list&cmsid=ceb17984a65019f3d334ffaa12f38c2a&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=110&adstar=0&clw=246#id=e5a1d0d832aa35c90d452453007f157a&currsn=0&ps=97&pc=97 原图链接][http://www.ybzhan.cn/news/Detail/52802.html 图片来源 仪表网]]]
 +
 +
硅基导模量 成光 学芯片研 成功
  
=='''超导 '''==
+
二、首个打破物理极限的1nm[[晶 管]]诞生
  
  指导电材料在温度接近绝对零度的时候,物 分子热运动下材料的电阻趋近于0的 质。" "是指能进行超导传输的导电材料。
+
  三、[[碳]][[纳米]]晶 能首次 越硅晶
  
==''' 导体 材料'''==
+
四、“[[石墨]]烯之父”发现比石墨烯更好的半 导体 ——[[硒化铟]](InSe)
===金属材料===
 
  
 导 材料 是用以传递电流而又没有或很小电能损失 材料,主要以电线、电缆为代表。随着 电子 工业的发展,传送弱电流的导电涂料、胶粘剂和透明导电材料等的应用也十分广泛。导电材料的基本性质以电阻率表征。
+
  五、人类首次飞秒拍摄到了半 材料 内部 [[ 电子]]运动
  
  电线 电缆所用材料主要是铜、铝及其合金。铜作为 材料 大都是电解铜,含铜量为99.97%一99.98%,含有少量金属杂质和氧,其中的杂质会降低电导率,铜中含有氧也使产品性能大大下降。 种无 铜性能稳定、抗腐蚀、延展性好、抗疲劳,可拉成很细的丝,适合于做海底同轴电缆的外部软线,也可用于太阳能电池。
+
  [[美国]]犹他大学工程师最新发现新型[[二维半 材料]] [[ 化锡]](SnO)
  
  铝导线与铜导线相比,电导率低,但其质量轻,相对密度只 铜的1/3,这是铝导线的一大优点。主要用作送电线和配电线。对于160kV以上的高压电线,往往用钢丝增强的铝电缆或铝合金线。  
+
  七、[[德国]]开发出新型 机无机杂化“[[人工树叶]]”
===电阻元件===
 
  
  电力 电子工业方面应用的电阻元件,其阻抗性质大都是欧姆 的(纯电阻)。电子方面要求的电阻值范围在103Ω—108Ω之间,要求用于制作电阻的 料电阻率ρ<10-6Ω·m,做成的电子元件的电阻值稳定,温度系数小。还有 电阻元件是用于做电热元件或发光元件。
+
  无机半导体 料SnIP具有DNA 双螺旋结构
  
  用来做电阻的金属材料有电子线路应用的精密电阻合金,如锰-铜合金,铜-镍合金。后者的电阻温度系数最小。这类合金的最终热处理是均匀退火,尤其在做成 品以后,还要进行一次低温长时间退火,以保证电学性能稳定。用来做发热元件 金属材料是镍-铬合金和铁-铬-铝合金。 [2]
+
  九、首块纳米晶体“墨水”制 成的 管问世
===固 电解质===
 
  
  根据物质在溶解或熔融状态下是否导电,人们将其分为电解质和非电解质两大类。如盐(NaCl)就是典型的电解质,糖就是非电解质。但在20世纪60年代初,人们发现还有些物质在低于熔点温度下的固体状态,也有高的离子导电特性,这类物质就叫做固体电解质。固体电解质导电的本质在于内部带电氧离子的运动。晶格结构不同,离 排列方 不同,对氧离子的活动 力有很大影响。另外,如果晶格完美无缺,离子运动也较困难,若通过掺杂的方法产生大 缺陷就能提高电 率。
+
  十、美国科学家设计超材料以光 释放 能量 传递信息<ref>[http://www.sohu.com/a/124346281_465246 2016年半 体材料领域十大突破],搜狐网,2017-01-15</ref>
  
  固体电解质在高技术中有重要作用,如氧化锆陶瓷固体电解质就是燃料电池的心脏;还可以做磁流 发电机的电极 材料 ;电解水制氢中的隔膜采用的也是固体电解质,它还可以用来制成氧敏元件,广泛用于汽车尾气检测、金属冶炼过程中氧的在线分析等。 [
+
== '''外部連結''' ==
 +
*[http://www.sohu.com/a/124346281_465246 半导 体材料 领域十大突破]
  
===导电高分子材料与电子浆料===
+
*[http://www.ybzhan.cn/news/Detail/52802.html  二维半导体制备及非线性光学特性研究获突破]
 +
== '''參考來源''' ==
 +
{{Reflist}}
  
  高分子材料属于共价键结合的大分子链结构,电子被紧紧束缚,属于绝缘材料。随着 科学 技术的发展,人们采用多种技术使某些高分子材料也具有了导电性。可以将高分子导电材料分为3类:抗静电表面活性剂、导电材料(碳、金属粉)与高分子材料复合、结构型导电高分子材料。另外,由于电子技术的特殊要求,电子浆料也成为一种重要的新型材料。 [2]  
+
[[Category:300 學類]][[Category:330 物理 总论]]
参考资料
 

於 2020年7月24日 (五) 16:58 的最新修訂

半導體
知名於  集成電路的主要材料

半導體 ( semiconductor),指常溫下導電性能介於導體(conductor)與絕緣體(insulator)之間的材料。

半導體在收音機電視機以及測溫上有着廣泛的應用。如二極管就是採用半導體製作的器件。半導體是指一種導電性可受控制,範圍可從絕緣體導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、移動電話或是數字錄音機當中的核心單元都和半導體有着極為密切的關連。常見的半導體材料有砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。[1]

基本信息

中文名稱 半導體 物質形式 氣體、等離子體等
外文名稱 semiconductor   應用  集成電路
導電性能    導體與絕緣體之間 發現時間 1833年
代表材料  硅、鍺、砷化鎵 電阻率 10-3~10-9 W•cm

半導體的概念

所謂半導體,顧名思義,就是它的導電能力介乎導體絕緣體之間,半導體的電阻率為10-3~10-9 W•cm。

物質存在的形式多種多樣,固體液體氣體、等離子體等。通常把導電性差的材料,如煤、人工晶體、琥珀陶瓷等稱為絕緣體。而把導電性比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與導體和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。半導體材料最外層電子既不像導體那樣極易擺脫原子核的束縛, 成為自由電子, 也不像絕緣體那樣被原子核束縛得那麼緊, 因此, 半導體的導電特性介於二者之間。

半導體材料

半導體材料是一類具有半導體性能、可用來製作半導體器件和集成電的電子材料,其電阻率在10(U-3)~10(U-9)歐姆/厘米範圍內。半導體材料的電學性質對光、熱、電、磁等外界因素的變化十分敏感,在半導體材料中摻入少量雜質可以控制這類材料的電導率。正是利用半導體材料的這些性質,才製造出功能多樣的半導體器件。 半導體材料是半導體工業的基礎,它的發展對半導體技術的發展有極大的影響。 [2]

常見的半導體材料有砷化鎵等。用得最多的半導體是鍺(zhě)和硅(guī),都是四價元素。 一種銀白色的硬而脆的金屬元素,呈二價及四價,用作半導體(如在晶體管中) [germanium]――元素符號Ge 鍺 zhě金屬化學元素。符號Ge。灰白色結晶,有光澤。它是一種重要的半導體材料。主要用於制晶體管整流器等。[3]

半導體的類型

本徵半導體:不含雜質且無晶格缺陷的半導體稱為本徵半導體

參雜半導體:通過擴散工藝,在本徵半導體中摻入少量合適的雜質元素,可得到雜質半導體。

發展歷史

1833年,英國巴拉迪最先發現硫化銀的電阻隨着溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨着溫度的上升而降低。這是半導體現象的首次發現。

1839年法國貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。

1873年,英國史密斯發現晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。

1874年,德國布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了氧化銅整流效應。

2015年中國在公布的「中國製造2025」戰略中提出培育半導體產業。為此,中國地方政府競相利用優惠政策吸引國內外的半導體相關企業。

2018年4月11日,復旦大學微電子學院教授張衛、周鵬團隊成員劉春森在實驗室內對硅片進行切割。張衛、周鵬團隊實現了具有顛覆性的二維半導體准非易失存儲原型器件,開創了第三類存儲技術。中國大型半導體企業紫光集團旗下的長江存儲科技在湖北省武漢市推進的三維NAND的量產項目,愛德萬測試的銷售負責人稱「估計將在2018年底到2019年迅速實現量產」。

2018年4月24日,《日本經濟新聞》預計最早在2018年底開始向市場供應尖端產品三維NAND型閃存芯片。曾在液晶面板等眾多產業出現的產品供給過剩也可能在半導體領域引發價格下跌。

主要特點

半導體五大特性∶摻雜性,熱敏性,光敏性,負電阻率溫度特性,整流特性。

在形成晶體結構的半導體中,人為地摻入特定的雜質元素,導電性能具有可控性。在光照和熱輻射條件下,其導電性有明顯的變化。

半導體的應用

在當前的應用相當廣泛,他不僅是半導體集成電路,半導體器件和硅太陽能電池的基礎材料,而且用半導體製作的電子器件和產品已經大範圍的進入到人們的生活,人們的家用電器中所用到的電子器件80%以上與案件都離不開材料。是稀有元素,地殼中的含量較少,由於鍺的特有性質,使得它的應用主要集中與製作各種二極管三極管等。而以鍺製作的其他錢江如探測器,也具有着許多的優點,廣泛的應用於多個領域。

有機半導體材料具有熱激活電導率,如萘蒽聚丙烯聚二乙烯苯以及鹼金屬絡合物,有機半導體材料可分為有機物聚合物和給體受體絡合物三類。有機半導體芯片等產品的生產能力差,但是擁有加工處理方便,結實耐用,成本低廉,耐磨耐用等特性。

非晶半導體按鍵合力的性質分為共價鍵非晶半導體和離子鍵非晶半導體兩類,可用液相快冷方法和真空蒸汽或濺射的方法製備。在工業上,非晶半導體材料主要用於製備像傳感器太陽能鋰電池薄膜晶體管等非晶體半導體器件。

化合物半導體材料種類繁多,按元素周期表族來分類,分為三五族,二六族,四四族等。如今化合物半導體材料已經在太陽能電池,光電器件,超高速器件,微波等領域占據重要位置,且不同種類具有不同的應用。總之,半導體材料的發展迅速,應用廣泛,隨着時間的推移和技術的發展,半導體材料的應用將更加重要和關鍵,半導體技術和半導體材料的發展也將走向更高端的市場。

當前化合物半導體產業發展主要體現在以下五個方面。

1.消費類光電子。光存貯、數字電視與全球家用電子產品裝備無線控制和數據連接的比例越來越高,音視頻裝置日益無線化。再加上筆記本電腦的普及,這類產品的市場為化合物半導體產品的應用帶來了龐大的新市場。

2.汽車光電子市場。目前汽車防撞雷達已在很多高檔車上得到了實用,將來肯定會越來越普及。汽車防撞雷達一般工作在毫米波段,所以肯定離不開砷化鎵甚至磷化銦,它的中頻部分才會用到鍺硅。由於全球汽車工業十分龐大,因此這是一個必定會並發的巨大市場。

3.半導體照明技術的迅猛發展。基於半導體發光二極管(LED)的半導體光源具有體積小、發熱量低、耗電量小、壽命長、反應速度快、環保、耐衝擊不易破、廢棄物可回收,沒有污染,可平面封裝、易開發成輕薄短小產品等優點,具有重大的經濟技術價值和市場前景。

特別是基於LED的半導體照明產品具有高效節能、綠色環保優點 ,目前LED已廣泛用於大屏幕顯示、交通信號燈、手機背光源等,開始應用於城市夜景美化亮化、景觀燈、地燈、手電筒、指示牌等,隨着單個LED亮度和發光效率的提高,即將進入普通室內照明、檯燈筆記本電腦背光源、LCD顯示器背光源等,因而具有廣闊的應用前景和巨大的商機。

4.新一代光纖通信技術。新一代的40Gbps光通信設備不久將會推向市場,代替25Gbps設備投入大量使用。而這些設備中將大量使用磷化銦砷化鎵化合物半導體集成電路。

5.移動通信技術正在不斷朝着有利於化合物半導體產品的方向發展。目前二代半(2.5G)技術成為移動通信技術的主流,同時正在逐漸向第三代(3G)過渡。二代半技術對功放的效率和散熱有更高的要求,這對砷化鎵器件有利。3G技術要求更高的工作頻率,更寬的帶寬和高線性,這也是對砷化鎵和鍺硅技術有利的。目前第四代(4G)的概念已明確提出來了。4G技術對手機有更高的要求。它要求手機在樓內可接入無線局域網(WLAN),即可工作到2.4GHz和5.8GHz,在室外可在二代、二代半、三代等任意制式下工作。

因此這是一種多功能、多頻段、多模式的移動終端。從系統小巧來說,當然會希望實現單芯片集成(SOC),但單一的硅技術無法在那麼多功能和模式上都達到性能最優。要把各種優化性能的功能集成在一起,只能用系統級封裝(SIP),即在同一封裝中用、鍺硅、砷化鎵等不同工藝來優化實現不同功能,這就為砷化鎵帶來了新的發展前景。[4]

半導體材料的發展

第一代半導體材料

主要以(Si)、(Ge)為主,20世紀50年代,Ge在半導體中占主導地位,主要應用於低壓、低頻、中功率晶體管以及光電探測器中,但是Ge半導體器件的耐高溫和抗輻射性能較差,到60年代後期逐漸被Si器件取代。

用Si材料製造的半導體器件,耐高溫和抗輻射性能較好。Si儲量極其豐富,提純與結晶方便,二氧化硅(SiO2)薄膜的純度很高,絕緣性能很好,這使器件的穩定性與可靠性大為提高,因此Si已經成為應用最廣的一種半導體材料。

目前95%以上的半導體器件和99%以上的集成電路都是由Si材料製作。在21世紀,它的主導和核心地位仍不會動搖。但是Si材料的物理性質限制了其在光電子和高頻高功率器件上的應用。

第二代半導體材料

20世紀90年代以來,隨着移動通信的飛速發展、以光纖通信為基礎的信息高速公路和互聯網的興起,以砷化鎵(GaAs)、磷化銦(InP)為代表的第二代半導體材料開始嶄露頭腳。GaAs、InP等材料適用於製作高速、高頻、大功率以及發光電子器件,是製作高性能微波、毫米波器件及發光器件的優良材料,廣泛應用於衛星通訊、移動通訊、光通信、GPS導航等領域。但是GaAs、InP材料資源稀缺,價格昂貴,並且還有毒性,能污染環境,InP甚至被認為是可疑致癌物質,這些缺點使得第二代半導體材料的應用具有很大的局限性。

第三代半導體材料

主要包括SiCGaN金剛石等,因其禁帶寬度(Eg)大於或等於2.3電子伏特(eV),又被稱為寬禁帶半導體材料。和第一代、第二代半導體材料相比,第三代半導體材料具有高熱導率、高擊穿場強、高飽和電子漂移速率和高鍵合能等優點,可以滿足現代電子技術對高溫、高功率、高壓、高頻以及抗輻射等惡劣條件的新要求。

是半導體材料領域最有前景的材料,在國防航空航天石油勘探、光存儲等領域有着重要應用前景,在寬帶通訊、太陽能、汽車製造、半導體照明、智能電網等眾多戰略行業可以降低50%以上的能量損失,最高可以使裝備體積減小75%以上,對人類科技的發展具有里程碑的意義。[5]

半導體領域十大突破

一、硅基導模量子集成光學芯片研製成功

二、首個打破物理極限的1nm晶體管誕生

三、納米晶體管性能首次超越硅晶體管

四、「石墨烯之父」發現比石墨烯更好的半導體——硒化銦(InSe)

五、人類首次飛秒拍攝到了半導體材料內部的電子運動

六、美國猶他大學工程師最新發現新型二維半導體材料氧化錫(SnO)

七、德國開發出新型有機無機雜化「人工樹葉

八、新型無機半導體材料SnIP具有DNA的雙螺旋結構

九、首塊納米晶體「墨水」製成的晶體管問世

十、美國科學家設計超材料以光子形式釋放能量傳遞信息[6]

外部連結

參考來源

  1. 半導體,電子工程世界網
  2. 半導體材料相關知識介紹,電子工程世界網,2013-09-22
  3. 半導體,電子工程世界網
  4. 半導體材料應用有哪些_半導體材料應用領域介紹,電子發燒友網,2018年03月08日
  5. 中科風控:第三代半導體材料——碳化硅(SiC),網易網,2017-08-16
  6. 2016年半導體材料領域十大突破,搜狐網,2017-01-15